
PHYSICAL REVIEW E APRIL 1997VOLUME 55, NUMBER 4
Solitons in crystalline polyethylene: Isolated chains in the transconformation

L. I. Manevitch1,* and A. V. Savin2,†
1N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, 117977 Moscow, Russia

2State Institute of Physicotechnical Problems, ul. Precistenka 13/7, 119034 Moscow, Russia
~Received 29 January 1996; revised manuscript received 11 October 1996!

This paper is devoted to the investigation of soliton-type excitations in crystalline polyethylene. A numerical
solution of the problem of the existence and stability of dynamical solitons in an isolated polyethylene chain
has been obtained. In the framework of a realistic model, taking into account deformations of the valence
angles and valence bonds, soliton-type excitations describing propagation of the local region of tension along
the chain have been found. The existence of the solitons of tension is a direct consequence of a predominance
of geometric nonlinearity in a transzigzag chain over a physical one. It is shown that the polyethylene molecule
has a comparitively narrow spectrum of soliton velocities in the supersonic region. The modeling performed
shows that the solitons of tension are stable over the whole area of their existence. The region of parameters,
where interaction between solitons is elastic, has been found. In our numerical analysis we took a refined
version of an analytic solution for the limiting case of rigid bonds as the starting point.
@S1063-651X~97!03102-4#
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I. INTRODUCTION

Although the problem of linear plane dynamics of t
polyethylene molecule was studied by Kirkwood@1# more
than half a century ago, its nonlinear generalization has
come the subject of theoretical analysis only recently@2#.
Such an analysis was stimulated by finding the essential
of localized nonlinear excitations in the process of mecha
cal degradation of one-dimensional crystals@3,4#. It turned
out that a transition from the straight chain to the ‘‘transz
zag’’ conformation leads to a qualitative change in the ty
of soliton solutions: instead of the solitons of compress
one can find supersonic solitons of tension as elemen
nonlinear excitations@2#. The existence of the solitons o
tension is a consequence of geometric nonlinearity of
transzigzag chain which is absent in the case of longitud
dynamics of a straight chain. This conclusion was, howev
obtained in the approximation of infinitely rigid valenc
bonds; i.e., if only deformations of valence angles are
lowed for tension. The problem concerning the influence
inevitable deformations of valence bonds on the dynamic
solitons of this type has remained open.

In this paper the study of solitons of tension in the po
ethylene molecule is done in the framework of a more re
istic model taking into account deformations of both the v
lence angles and valence bonds. Previously a refined ver
of an analytic solution for the limiting case of rigid bond
was obtained. This has been taken as the starting point in
following numerical analysis of the general problem.

II. THE MODEL

In the studies of low-energetic dynamical processes
polyethylene the motion of hydrogen atoms with respec
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the main chain is not essential and the approximation
‘‘united atoms’’ can be used@5#.

Let us consider a polyethylene molecule~CH2) ` in the
transzigzag conformation. In the equilibrium state the ba
bone of the molecule has a plane zigzag structure which m
be characterized by the stepr051.53 Å ~equilibrium length
of the valence bond H2CuCH2) and by the zigzag angle
u05113° ~equilibrium valence angle CH2uCH2uCH2).
A schematic structure of the transzigzag is represented
Fig. 1.

Let the transzigzag be directed along thex axis and be
situated in the planexy. Then thenth unit ~CH2) of the
chain has the coordinates

xn
s5nlx , yn

s5~21!nl y/2,

where l x5r0sin(u0/2) and l y5r0cos(u0/2) are longitudinal
and transversal steps of the transzigzag chain. It is con
nient to introduce the relative coordinates

un5xn2xn
s , vn5~21!n11~yn2yn

s!.

Hereun andvn determine longitudinal and transversal di
placements of thenth united atom from its equilibrium state
respectively, with the positive direction for transversal d
placement to the center of the zigzag~Fig. 2!. The length of
thenth valence bond and the cosine of thenth valence angle
are

FIG. 1. The structure of polyethylene molecule~CH2) ` .
4713 © 1997 The American Physical Society
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rn5A~ l x2wn!
21~ l y2zn!

2,

cos~un!52
an21an2bn21bn

rn21rn
, ~1!

where wn5un2un11 and zn5vn1vn11 are longitudinal
and transversal deformations of thenth segment of the chain
an5 l x2wn , bn5 l y2zn .

The Hamiltonian of the chain can be written as

H5(
n

F12Mu̇n
21

1

2
M v̇n

21V~rn!1U~un!G . ~2!

Here the mass of the united atomM514mp
(mp51.672 61310227 kg is the mass of the proton!,

V~rn!5D0$12exp@2a~rn2r0!#%
2 ~3!

is the potential of thenth valence bond,

U~un!5 1
2g~cosun2cosu0!

2 ~4!

is the potential of thenth valence angle. According to Re
@5#, the energy of the valence bondD05334.72 KJ/mol, the
parametersa51.91 Å21, and g5130.122 KJ/mol. The
plane mechanical model of the chain is presented in Fig

If deformations of the bonds and angles are small
parabolic approximation of potentials~3! and~4! can be used

V~rn!'
1
2K1~rn2r0!

2, U~un!'
1
2K2~un2u0!

2, ~5!

where force constants K152D0a
25405.53 N/m,

K25gsin2u0518.308310220 J.
Linearization of the equations of motion

Mün52
]H

]un
, M v̈n52

]H

]vn
, n50,61,62, . . . ,

~6!

with account of expressions~1! and~5! allows one to obtain
the dispersion relation@1#

v6
2 ~q!5v0

2~q!6Av0
4~q!2v1

4~q!. ~7!

FIG. 2. Reference systems for the displacements of united
oms.

FIG. 3. The plane mechanical model of the polyethylene ch
.
e

Here

v0
2~q!5C1~11cosu0cos2q!

12C2~11cos2q!~12cosu0cos2q!,

v1
4~q!58C1C2~11cos2q!sin22q,

andC15K1 /M , C25K2 /Mr0
2. The upper@v5v1(q)# and

lower @v5v2(q)# branches correspond to optic and acou
tic phonons, respectively.

The velocity of long-length longitudinal phonons~sound
velocity!

c05 l x limq→`

v2~q!
2q

52AK2 /M tan~u0/2!/A114e tan~u0/2!,

where the dimensionless parameter

e5C2 /C15K2 /K1r0
250.019 29

characterizes the relation of the stiffness of the valence a
to the stiffness of the valence bond. It turns out that the la
far exceeds the former~approximately by two orders!. There-
fore it seems that one can use the approximation of the
nitely rigid valence bonde50 (K15`). However, in this
approximation the sound velocity

c̄052AK2 /M tan2~u0/2!58449 m/s,

differs from the exact valuec057790 m/s50.922 10c̄0 .
Such a shift of the value of the sound velocity, as will
shown further, leads to the necessity of taking into acco
the finite rigidity of the valence bonds.

III. APPROXIMATION OF INFINITE RIGID
VALENCE BONDS

The complexity of the nonlinear system of the equatio
of motion~6! does not allow an analytical study except wh
«50 ~the bonds are infinitely rigid!. This limiting case was
studied in@2# but there is a need to reconsider in order
account more exactly for the dispersion properties of
model investigated.

It is supposed that geometric nonlinearity is predomin
andU(u)5 1

2K2(u2u0)
2. Then the Hamiltonian of the chain

has a form

H5(
n

F12Mu̇n
21

1

2
M v̇n

21
1

2
K2~un2u0!

2G . ~8!

Up to the second order the change of the length of thenth
valence bond and thenth valence angle are

Drn5rn2r05s~un112un!2c~vn111vn!

1
1

2r0
@c~un112un!1s~vn1vn11!#

2,

~9!

t-

.
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Dun5un2u05
c

r0
~un112un21!1

s

r0
~vn1112vn1vn21!

1
cs

r0
2 @~vn1vn11!

21~vn1vn21!
2

2~un112un!
22~un2un21!

2]

1
c22s2

r0
2 @~un2un21!~vn1vn21!

1~un112un!~vn1vn11!], ~10!

wherec5cos(u0/2), s5sin(u0/2).
Supposing that all variables change slowly enough al

the chain we can use the continuum approximati
un(t)5u(nlx ,t), vn(t)5v(nlx ,t). Then the equality~9!
takes the form

Dr5sl xux22cv1
1

2r0
~ cl xux12sv !21••• .

For infinitely rigid bondsDr[0, therefore

sl xux22cv1
1

2r0
~ cl xux12sv !21•••50. ~11!

Equation ~11! allows us to decrease a number of va
ables. Indeed, let us substitute the expressionsv5C1ux
1C2ux

21••• into Eq.~11! and equate the coefficients corr
sponding to different degrees of the variableux to zero. Then
in the main nonlinear approximation one can obtain the v
ues ofCi ( i51,2):C15s

2r0/2c, C25r0s
2/4c3, i.e.,

v5
1

2

s2

c
r0ux1

1

4

s2

c3
r0ux

2 . ~12!

Taking into account relation~12!, it is easy to transform the
discrete equation~10! to the form

Du5a1ux1a2ux
21a3uxxx ,

where the coefficients a152s/c, a25(s/c)3,
a35s

3(21s2)r0/6c. The third term on the right side of thi
relation has been neglected in@2#. As we shall see its contri
bution may be sufficiently perceptible.

Thus, in the case of infinitely rigid bonds, the Lagran
function of the system can be written in the form

L5E E F12Mut
21

1

2
M S 12 s

2

c
r0uxt1

1

2

s2

c3
r0uxuxtD 2

2
1

2
K2~a1ux1a2ux

21a3uxxx!
2Gdxdt. ~13!

The corresponding equation of motion is

]L

]u
2

]

]t

]L

]ut
2

]

]x

]L

]ux
1

]

]t]x

]L

]uxt
2

]3

]x3
]L

]uxxx
50,

or
g
:

l-

2utt1 c̄0
2uxx1p1uxuxx1p2uxxxx1p3uxxtt50, ~14!

where coefficients

p156a1a2K2 /M512s4K2 /M c
4,

p252a1a3K2 /M52s4~21s2!K2r0
2/6M c2,

p35r0
2s4/4c2.

Let us now use the wave variablej5x2ct, wherec is
velocity of the propagation of the stationary wave. Then
equation of motion has the form

ujj~ c̄0
22c2!1p1ujujj1~p21p3c

2!ujjjj50. ~15!

After integration~15! and substitutingw5uj one can obtain
the equation

~ c̄0
22c2!w1 1

2p1w
21~p21p3c

2!wjj50. ~16!

In distinction to @2# p2Þ0, moreover, the ratio
p2 /p3c

2;0.45 . So, the refinement performed is reasona
The multiplication onwj and integration of Eq.~16! leads

to the stationary Boussinesq equation

~p21p3c̄
2!wj

21 1
3p1w

31~ c̄0
22c2!w250. ~17!

Equation~17! has the soliton solution

w~j!5A/cosh2~j/L !,

where the amplitude A53(c22 c̄0
2)/p1, the width

L52A(p21p3c
2)/(c22 c̄0

2), and the velocityc. c̄0.
Thus in our transzigzag chain with geometric anharm

nicity the supersonic solitons of tension

u~x,t !5AL tanhS x2ct

L1
1x1D ,

exist, where the initial center position isx1, the soliton ve-
locity c. c̄0. The corresponding transversal displaceme
v(x,t) can be found from Eq.~12!.

The existence of the solitons of tension is a direct con
quence of the zigzag structure of the chain. In a strai
chain such solitons are impossible. Let us note that in
straight chain a geometric anharmonicity leads to existe
of the envelope solitons@7#.

IV. NUMERICAL TECHNIQUES FOR REVEALING
OF SUPERSONIC SOLITONS

Let us look for a soliton of system~6! in the form of a
traveling wave un(t)5u(j), vn(t)5v(j), where j5nlx
2ct, c is the wave velocity, the functionsu andv are sup-
posed to be smoothly dependent onj. Then the Lagrangian
corresponding to system~6!

L5(
n

F12Mu̇n
21

1

2
M v̇n

22V~rn!2U~un!G
can be written as
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L̄5(
n

H c2M24l x
2 @16wn

22~wn1wn11!
2116~vn112vn!

2

2~vn122vn!
2#2V~rn!2U~un!J .

A supersonic solitonlike solution always corresponds to
saddle point of the Lagrangian. Consequently, it may
found as a minimum point of the functional

F5
1

2(n ~L̄wn
2 1L̄vn

2 !.

Thus for the revealing of the solitonlike solution~solitary
wave! $wn ,vn%n51

N the conditional minimum problem

F5
1

2 (
n52

N21

~L̄wn
2 1L̄vn

2 !→min: w15wN5v15vN50

~18!

may be solved numerically.
All solitonic regimes considered are smooth solita

waves with a constant profile. The absence of such solut
for a certain valuec means that such a soliton does not ex

The problem~18! has been solved by the techniques
conjugated gradients@6#. The number of united atoms wa
supposed to beN5400. On the basis of an analytical stud
in the limiting case«50 the initial descent point was take
in the form of two symmetrical bell-like profilesw(n),
v(n) with the center at the middle of the chain.

Every soliton solution$wn
0 ,vn

0%n51
N is characterized by the

energy

E5 (
n52

N21 H c2M24l x
2 @16wn

22~wn1wn11!
2116~vn112vn!

2

2~vn122vn!
2#1V~rn!1U~un!J ,

by the overall longitudinal tension of the chain

R5 (
n51

N

wn ,

which will be named further as a soliton amplitude, by t
mean square width measured in the periods of the chain

L52A(
n51

N

~n2m!2wn /R,

~the point

m51/21 (
n51

N

nwn /R

defines the place of the soliton center!, by the maximum
value of the valence angleū5maxn(un) and by the maximum
length of the valence bondr̄5maxn(rn).
e
e

ns
.
f

V. SOLITONS OF TENSION

For real molecular systems the model of infinitely rig
valence bonds turns out to be rough. The soliton form
pends essentially on its velocity, but the restriction connec
with infinite rigidity of valence bonds leads, as was me
tioned above, to a perceptible shift of the sound velocity.

In this section we consider solitons of tension taking in
account the finite rigidity of the valence bonds. Let us co
sider a soliton solution for potentials~3! and ~4!. Potential
~4! is a periodic multiwell barrier potential with minima
u5u0 andu52p2u0. It reflects correctly the multistability
of the transzigzag chain. Indeed, there are energetic
equivalent ground states: xn

05nlx , yn
05(21)nl y/2

(un[u0) and xn
05nlx , yn

05(21)n11l y/2 (un[2p2u0).
The essential peculiarity of this potential is the existence
inflection pointu15157.99°.

Numerical solution of problem~18! has shown that the
nonlinear system~6! has solitonic solutions with superson
velocities. A typical form of the soliton is presented at Fig.
The soliton has bell-like profiles for compone
wn5un112un , vn , un , rn . There is longitudinal tension
(wn.0) and transversal compression (vn.0). As this takes
place the values of the valence angles increase (un.u0) and
valent bonds tensern.r0.

The soliton of tension exists in a narrow supersonic

FIG. 4. The profiles of supersonic soliton of tensio
wn5un112un ~a!, vn ~b!, un ~c!, rn ~d! in the initial (t50) and
time t5160.682 ps , after soliton approaches 10 000 united ato
The dimensionless velocity of the solitons50.94 (c57940.21
m/s!.
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55 4717SOLITONS IN CRYSTALLINE POLYETHYLENE: . . .
gion s0,s,s1, where dimensionless velocitiess05c0 / c̄0,
s5c/c0, s150.9408. The dependence of the energyE, width
L and amplitudeR of the soliton on dimensionless velocit
s are presented in Fig. 5. The finiteness of the velocity sp
trum of the soliton is connected with the existence of
inflection pointu1 for potential ~4!. With the increasing of
the velocity the value of the maximum valence ang
ū5maxun monotonically increases and approachesu1 near
the right boundary of the spectrum. With the increasing
the velocity the energy and amplitude monotonically gr
and approach their maximum valuesEm54.6 eV,Rm55.3 Å
for s5s1 . The width of the soliton decreases, but alwa
exceeds 18 segments of the chain. Therefore, the assum
concerning the smooth dependence of the soliton form on
number of cites is satisfied. Concrete values of the ene
E, width L, amplitude R, maximum valence angle
ū5maxun and maximum length of the valence bon
r̄5maxrn are presented in Table I. As is seen from th
table, the tension of the chain occurs mainly due to an
crease of the valence angles. The elongation of the vale
bonds does not exceed several hundred parts of angs
while the valence angles can increase on several decad
degrees.

Numerical solution of the minimum problem~18! has also
shown that in the chain with multiwell potentialU2(u) the
high-amplitude soliton of tension exists withs50.990. The
corresponding soliton energy isE511.55 eV. The soliton
profile is shown in Fig. 6. In the localization region of th
soliton the values of the valence angles exceed 180°,
locally the chain transfers to another ground state. Existe
of such a soliton is connected with the multistability of p
tential. It was shown earlier that in a two-dimensional alph

FIG. 5. The dependence of the soliton energyE ~a!, width L ~b!,
amplitudeR ~c! on dimensionless velocitys.
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helix model @8# geometric nonlinearity can also lead to the
existence of the soliton of tension with unique velocity.

VI. NUMERICAL SIMULATION OF SOLITON DYNAMICS

For the estimation of the stability of the nonlinear excita-
tions discussed above the modeling of the soliton dynamic
in the finite chain consisting ofN15400 sites was per-

TABLE I. The dependence of soliton energyE, width L, ampli-
tude R, maximum valence angleū, and maximum length of the
valence bondr̄ on dimensionless velocitys.

s E ~eV! L R ~Å! ū ~deg! r̄ ~Å!

0.9221 0 ` 0 113.0 1.530
0.924 0.030 41.9 0.63 114.5 1.532
0.926 0.105 31.2 1.00 116.3 1.535
0.928 0.216 26.7 1.32 118.2 1.538
0.930 0.370 23.4 1.62 120.2 1.542
0.932 0.582 21.3 1.94 122.4 1.546
0.934 0.877 19.9 2.30 125.0 1.551
0.936 1.309 18.9 2.74 128.0 1.556
0.938 1.998 18.4 3.36 131.6 1.564
0.940 3.390 18.8 4.44 136.8 1.574
0.9408 4.601 19.6 5.31 139.9 1.581

FIG. 6. The profiles of high-amplitude supersonic soliton of
tensionwn5un112un ~a!, vn ~b!, un ~c!, rn ~d!. The soliton veloc-
ity s50.990, the energyE511.55 eV.
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4718 55L. I. MANEVITCH AND A. V. SAVIN
formed. The system of the equations of motion

Mün52
]H

]un
, M v̈n52

]H

]vn
, n53, . . . ,N122

~19!

was integrated numerically. The end sites of the chainn51,
2, N121, N1 are supposed to be immobile~the condition of
fixed boundary!.

The initial conditions for system~19!

u1~0!5R/2, un11~0!5un~0!2wn
0 , n52, . . . ,N21;

vn~0!5vn
0 , n51, . . . ,N;

u̇n~0!5sc̄0@un11~0!2un21~0!#/2l x ,

v̇n~0!5sc̄0@vn11~0!2vn21~0!#/2l x ,

n52, . . . ,N21; un~0!5uN~0!,

vn~0!5vN~0!, u̇n~0!50, v̇n~0!50, N,n,N1

correspond to the soliton solution$wn
0 ,vn

0%n51
N of problem

~18!. As this takes place, the arrangement of the center of
soliton may be defined as the point of intersection of
broken line, which subsequently unites the poin
$(n,un)%n51

N1 , with the axisn.

FIG. 7. The elastic collision of two solitons of tension. Dime
sionless velocitys50.935.

FIG. 8. The unelastic collision of two solitons of tension. D
mensionless velocitys50.940.
e
e
s

Let us takeN5200, then the center of the soliton will b
initially situated on the 100th particle of the chain. To mod
the dynamics of the soliton in the infinite chain, every tim
when it propagates to the right up to the 200th site, the s
of the soliton to the left on these 200 sites is fulfilled

un~ t !5un1200~ t !, u̇n~ t !5u̇n1200~ t !, vn~ t !5vn1200~ t !,

v̇n~ t !5vn1200~ t !, n51, . . . ,N;

un~ t !5uN1~0!,

u̇n~ t !50, vn~ t !5vN1~0!,

v̇n~ t !50, n5N11, . . . ,N1 .

The system of Eqs.~19! was integrated numerically by th
conventional Runge-Kutta method of the fourth order w
the constant step of the integration. The accuracy of the
merical integration was controlled by the preservation of
integral of the total energy

H5 (
n52

N121 F12Mu̇n
21

1

2
M v̇n

21V~rn!1U~un!G .
For example, while the stepDt510215 the full energy was
preserved up to seven meaning numbers in the all time
integration.

Numerical simulation of the dynamics has shown that
solitons of tension are dynamically stable at all admissi
velocities of the motion. They propagate along the ch
with preservation of their form. For example, the soliton
tension with the initial dimensionless velocitys50.940
(c57940.21 m/s! passes 9999.762 sites of the chain duri
160.683 ps, i.e., the dimensionless velocity iss̄50.939 756.
The profile of the soliton in finite time coincides fully with
the initial one~see Fig. 4!.

The collision of two solitons has been numerically sim
lated also. Let us consider the collision of two solitons whi
move foward to each other with the same velocitys. The
numerical integration of system~19! has shown that the col
lision occurs elastically only if it does not lead to the i
crease of the valence angles up to the value which co
sponds to the inflection pointu1 of the potential~4!. In the
former case the reflection of the solitons occurs without
radiation of the phonons and change of the form of

FIG. 9. The collision of the small-amplitude soliton of tensio
(s50.930) with the high-amplitude soliton (s50.990).
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55 4719SOLITONS IN CRYSTALLINE POLYETHYLENE: . . .
solitons—see Fig. 7. Near the right boundary of the veloc
spectrum this condition is broken, so that the collision lea
to the deformations of the angles exceeding the critical v
uesu1 and therefore it occurs unelastically. The reflection
solitons is accompanied by the radiation of the phonons~see
Fig. 8!.

Let us consider at last the collision of high-amplitude so
ton with the low-amplitude solitons of tension. The hig
amplitude soliton has only one admissible value of the
locity of propagations50.990. In the localization region o
this soliton the angle deformation exceeds always the va
corresponding to the inflection point of the valence an
potential. Therefore the collision of the high-amplitude so
ton with the low-amplitude one occurs inelastically with r
diation of the phonons~see Fig. 9!. Such a collision leads to
the breaking of the high-amplitude soliton. Its motion af
collision is accompanied by sustained radiation of phono
The low-amplitude soliton preserves its form and propaga
after collision without the radiation of phonons.
a-

.I.

l.
y
s
l-
f

-

-

e
e
-

r
s.
s

VII. CONCLUSION

Nonlinear dynamics of a polyethylene chain is charact
ized by important peculiarities in comparison with a straig
anharmonic atomic chain. First, supersonic solitons of t
sion ~rather than compression! arise due to the predominan
role of geometric anharmonicity. Moreover, the spectrum
soliton velocity is restricted if one takes into account t
physical anharmonicity. The solitons of tension are stable
the whole region of their existence. The region of veloc
where interaction between solitons is elastic is more narr
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