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Solitons in crystalline polyethylene: Isolated chains in the transconformation
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This paper is devoted to the investigation of soliton-type excitations in crystalline polyethylene. A numerical
solution of the problem of the existence and stability of dynamical solitons in an isolated polyethylene chain
has been obtained. In the framework of a realistic model, taking into account deformations of the valence
angles and valence bonds, soliton-type excitations describing propagation of the local region of tension along
the chain have been found. The existence of the solitons of tension is a direct consequence of a predominance
of geometric nonlinearity in a transzigzag chain over a physical one. It is shown that the polyethylene molecule
has a comparitively narrow spectrum of soliton velocities in the supersonic region. The modeling performed
shows that the solitons of tension are stable over the whole area of their existence. The region of parameters,
where interaction between solitons is elastic, has been found. In our numerical analysis we took a refined
version of an analytic solution for the Ilimiting case of rigid bonds as the starting point.
[S1063-651%97)03102-4

PACS numbgs): 03.40-t, 63.20.Ry, 63.20.Pw

[. INTRODUCTION the main chain is not essential and the approximation of
“united atoms” can be usefb].

Although the problem of linear plane dynamics of the Let us consider a polyethylene molecyleH.,) .. in the
polyethylene molecule was studied by Kirkwoft] more transzigzag conformation. In the equilibrium state the back-
than half a century ago, its nonlinear generalization has bdione of the molecule has a plane zigzag structure which may
come the subject of theoretical analysis only recef®yy  be characterized by the stpg=1.53 A (equilibrium length
Such an analysis was stimulated by finding the essential rolef the valence bond HC—CH,) and by the zigzag angle
of localized nonlinear excitations in the process of mechanif,=113° (equilibrium valence angle CH—-CH,—CH,).
cal degradation of one-dimensional crystg8s4]. It turned A schematic structure of the transzigzag is represented in
out that a transition from the straight chain to the “transzig-Fig. 1.
zag"” conformation leads to a qualitative change in the type Let the transzigzag be directed along theaxis and be
of soliton solutions: instead of the solitons of compressiorsituated in the planexy. Then thenth unit (CH,) of the
one can find supersonic solitons of tension as elementarghain has the coordinates
nonlinear excitationg2]. The existence of the solitons of
tension is a consequence of geometric nonlinearity of the x,?:nlx, yno=(—1)”ly/2,
transzigzag chain which is absent in the case of longitudinal
dynamics of a straight chain. This conclusion was, howevetwhere |, = p,sin(6y/2) and|,=p,cos(y/2) are longitudinal
obtained in the approximation of infinitely rigid valence and transversal steps of the transzigzag chain. It is conve-
bonds; i.e., if only deformations of valence angles are alnient to introduce the relative coordinates
lowed for tension. The problem concerning the influence of
inevitable deformations of valence bonds on the dynamics of Un=Xy— XS, vp=(—1)""(y,—y9).
solitons of this type has remained open.

In this paper the study of solitons of tension in the poly-Hereu, andv, determine longitudinal and transversal dis-
ethylene molecule is done in the framework of a more realpjacements of thath united atom from its equilibrium state,
istic model taking into account deformations of both the va-respectively, with the positive direction for transversal dis-
lence angles and valence bonds. Previously a refined versigjlacement to the center of the zigz&gg. 2. The length of

of an analytic solution for the limiting case of rigid bonds the nth valence bond and the cosine of tht& valence angle
was obtained. This has been taken as the starting point in thge

following numerical analysis of the general problem.

Il. THE MODEL CH, CH,
: . . . 9
In the studies of low-energetic dynamical processes in ?
polyethylene the motion of hydrogen atoms with respect to b
CH, CH, CH,
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TElectronic address: alex@savin.msk.ru FIG. 1. The structure of polyethylene molec@H,) .. .
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Here

w3(q)=C,(1+ cosfycosA))

+2C,(1+cosy)(1—coshycosyy),

4 .
= +
FIG. 2. Reference systems for the displacements of united at- @1(q)=8C1C(1 coqu)stZq,

oms. andC,;=K,/M, C,=K,/Mp3. The uppefw=w,(q)] and
lower [ w= w_(q)] branches correspond to optic and acous-
— 2 2
pn=(x=wp)*+(1y—2y)?, tic phonons, respectively.
a a—b b The velocity of long-length longitudinal phonoitsound
cog6,)=— n—-1%n "n-1 n (1) velocity)
Pn-1Pn
Co=llim 2=(@

where w,=u,—Uu,;; and z,=v,tv,,1 are longitudinal a—=  2q
and transversal deformations of thith segment of the chain,
an=l,—Wy, by=l,~2,. =2VK, /M tan(6y/2)/V1+4e tan(6y/2),

The Hamiltonian of the chain can be written as where the dimensionless parameter

1
H=2 'V'“ +SMUR+V(pn) +U(B) | (2) €=C,/C,=K,/Kp2=0.019 29

Here the mass of the united atomM=14m, characterizes the relation of the stiffness of the valence angle

(m,=1.672 61X 10?7 kg is the mass of the protpn to the stiffness of the valence bond. It turns out that the latter
far exceeds the forméapproximately by two ordefsThere-
V(pn)=Do{l—exd — a(pn,—po)1}? 3 fore it seems that one can use the approximation of the infi-
. . nitely rigid valence bondk=0 (K;=«). However, in this
is the potential of theath valence bond, approximation the sound velocity
1
U(6,) =1 y(cosd,— cody)? (4) To=2K,/M tarf(6,/2)=8449 mis,

is the potential of thanth valence angle. According to Ref.
[5], the energy of the valence boilih=334.72 KJ/mol, the
parametersa=1.91 A™1, and y=130.122 KJ/mol. The
plane mechanical model of the chain is presented in Fig. 3
If deformations of the bonds and angles are small the
parabolic approximation of potential3) and(4) can be used

differs from the exact valuec,=7790 m/s=0.922 1@,.
Such a shift of the value of the sound velocity, as will be
shown further, leads to the necessity of taking into account
the finite rigidity of the valence bonds.

Ill. APPROXIMATION OF INFINITE RIGID

V(pn)=3Ki(pn—po)®  U(6))~3Ko(0,—60)% (5 VALENCE BONDS
where force constants K;=2D,a?=405.53 N/m, The_ complexity of the nonlinear system of the equations
K,= ysirf6,=18.308< 102 J. of motion (6) does not allow an analytical study except when
Linearization of the equations of motion £=0 (the bonds are infinitely rigid This limiting case was
studied in[2] but there is a need to reconsider in order to
} oH . oH account more exactly for the dispersion properties of the
Mup==-r= Mup=-——, n=0x12x2,..., model investigated.
n " (6) It is supposed that geometric nonlinearity is predominant

andU(6) = 3K,(6— 6,)2. Then the Hamiltonian of the chain
with account of expressiond) and(5) allows one to obtain has a form
the dispersion relatiofil]

w2(0)= (@) = o)~ wi(a). @) H=2 5 FMEESMOEE SO 007, @

Up to the second order the change of the length ofritie
M valence bond and theth valence angle are

Ut,)
/MW Apn=pn=po=#Uns1—Un) = Avn11F0p)

n-2 n-1 n n+l n+2 1 ’
+ 2_[0(un+1_ Up) +s(vpntoni1) ]
Po

FIG. 3. The plane mechanical model of the polyethylene chain. 9
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—
c — Uyt ColUyyx+ P1Ux Uy PoUysxxt PaUxxit= 0, (14
Aanzan_eozg(umrl Up— 1)+ (Un+1+zv +v,-1)

where coefficients

+ %[(vn+vn+1)2+(vn+vn,l)2 p1=6a;8,K,/M=12K,/M 4,
0

Po=2a;83K, /M =2,4(2+.2)K,p3/6M 2,
_(Un+1_un)2_(un_unfl)z] 0

/72_J2 P3= p0“4/4{12
+ ——[(Uy—Up_ +v,- _ .
o5 L(Un=Un-2)(onFon-a) Let us now use the wave variable=x—ct, wherec is
velocity of the propagation of the stationary wave. Then the
+(Ups1=Up)(Untone)]s (10 equation of motion has the form
where. = cos@y/2), »=sin(6y/2). Uge(CG—C2) + PrUglizet (Pa+ P3C?)Uges=0.  (15)

Supposing that all variables change slowly enough along
the chain we can use the continuum approximationAfter integration(15) and substitutingv=u, one can obtain
un(t)=u(nly,t), v,(t)=v(nl,,t). Then the equality(9) the equation
takes the form

(C5— C)WH 3paW+ (py+ PsC)Wee=0. (1)
1
Ap=slu—2w+ Z_W(AXUXJFZ“'U)ZJF e In distinction to [2] p,#0, moreover, the ratio
P, /p3c?~0.45 . So, the refinement performed is reasonable.
For infinitely rigid bondsA p=0, therefore The multiplication orw, and integration of Eq(16) leads

to the stationary Boussinesq equation
1
JIXUX_ZK/U—’_Z_pO(ﬁlXuX_F 241})2"’ -..=0. (ll) (p2+ p3C )W§ %plw3+(zg_cz)wzzo_ (17)

Equation (11) allows us to decrease a number of vari- Equation(17) has the soliton solution
ables. Indeed, let us substitute the expressiorsCiu, _
+ C2u§+ -- - into EQ.(11) and equate the coefficients corre- W(§)=AlcosH(¢/L),
sponding to different degrees of the variabjeto zero. Then
in the main nonlinear apprOX|mat|on one can obtain the valy
ues OfC (|—1 2) Cl_/ p0/2( Cz—po; /4{‘ y i e.,

where the amplitude A=3(c®—c3)/p;, the width
L=2/(p,+psc?)/(c®—c5), and the velocityc>c,.
Thus in our transzigzag chain with geometric anharmo-
1.2 1.2 nicity the supersonic solitons of tension
V=5 polkt 7 ‘§P0U (12

Ly

u(x,t)=AL tam‘(

+ X1

Taking into account relatiofil2), it is easy to transform the

discrete equatiofl0) to the form exist, where the initial center position X, the soliton ve-

A6=a,u, +a,u+asu locity c>c,. The corresponding transversal displacements
X X o v(x,t) can be found from Eq(12).
where the coefficients a;=2./, a,= (41,3, The existence of the solitons of tension is a direct conse-

az=-3(2+.2) py/6-. The third term on the right side of this duence of the zigzag structure of the chain. In a straight
relation has been neglected[@]. As we shall see its contri- chain such solitons are impossible. Let us note that in a
bution may be sufficiently perceptible. straight chain a geometric anharmonicity leads to existence
Thus, in the case of infinitely rigid bonds, the Lagrange®f the envelope solitons7].
function of the system can be written in the form
IV. NUMERICAL TECHNIQUES FOR REVEALING

42 2 OF SUPERSONIC SOLITONS
MUt"’ M 27 Pouxt+2 3P0U Uxt

Let us look for a soliton of syster(6) in the form of a

1 , traveling wave up(t)=u(§), va(t)=v(¢), where é=nly
- _KZ(alux+ a2ux+ a3uxxx)2

5 dxdt (13 —ct, ¢ is the wave velocity, the functions andv are sup-
posed to be smoothly dependent &nThen the Lagrangian
The corresponding equation of motion is corresponding to systei)
3 1
b ook 9ok 9 oL & L =3 Mu + 5Mo2=V(p) ~U(6,)

— 0,
AU It AU,  IX dUy  ILIX Uy  IXS IUsyy

or can be written as
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=3 [16vv — Wyt Wiy 1)+ 16(0p 41— 0)° , 02
n w (A)
n
2 0.1 4
—(Vn+2—vn)]=V(pn) —U(6,) .
. _ . 0.0 - |
A supersonic solitonlike solution always corresponds to the . 0 100 n 150

saddle point of the Lagrangian. Consequently, it may be vy (A)

found as a minimum point of the functional

1 N
E; (Lo +L2).

Thus for the revealing of the solitonlike solutigsolitary
wave {w,,v,}h_, the conditional minimum problem

Z L‘Zn+£5n)—>min: Wi=Wn=v;=0vn=0

(18)

I\)II—\

may be solved numerically.
All solitonic regimes considered are smooth solitary

waves with a constant profile. The absence of such solutions
for a certain value& means that such a soliton does not exist.

The problem(18) has been solved by the techniques of
conjugated gradient6]. The number of united atoms was
supposed to b&l=400. On the basis of an analytical study
in the limiting cases =0 the initial descent point was taken
in the form of two symmetrical bell-like profilesv(n),
v(n) with the center at the middle of the chain.

Every soliton solutiofw?,0%N_, is characterized by the
energy

[16W (Wn+Wn+1)2+16(vn+1_Un)2

2
Un)2]+v(pn)+ Uu(on i,

—(Unt2—

by the overall longitudinal tension of the chain

N
=> w
n=1
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FIG. 4. The profiles of supersonic soliton of tension
Wh=U,,1— Uy (@, vy (b), 6, (C), py (d) in the initial (t=0) and
time t=160.682 ps , after soliton approaches 10 000 united atoms.
The dimensionless velocity of the solitas=0.94 (c=7940.21
m/s).

V. SOLITONS OF TENSION

For real molecular systems the model of infinitely rigid
valence bonds turns out to be rough. The soliton form de-
pends essentially on its velocity, but the restriction connected
with infinite rigidity of valence bonds leads, as was men-
tioned above, to a perceptible shift of the sound velocity.

In this section we consider solitons of tension taking into
account the finite rigidity of the valence bonds. Let us con-
sider a soliton solution for potential8) and (4). Potential
(4) is a periodic multiwell barrier potential with minima

which will be named further as a soliton amplitude, by the 8= 6, and §=2m— 6. It reflects correctly the multistability

mean square width measured in the periods of the chain

N
> (n—m)?w, /R,
n=1

(the point

N
m=1/2+ >, nw,/R
n=1

defines the place of the soliton centeby the maximum
value of the valence angk=max,(6,) and by the maximum
length of the valence bona=max,(p,)-

of the transzigzag chain. Indeed, there are energetically
equivalent ground states X —nIX, =(—1)"/2
(6,=6y) and x8=nl,, y°=(— 1)"t1| /2 (9 =2m— 00)

The essential peculiarity of this potent|al is the existence of
inflection pointd;=157.99°.

Numerical solution of probleni18) has shown that the
nonlinear systent6) has solitonic solutions with supersonic
velocities. A typical form of the soliton is presented at Fig. 4.
The soliton has bell-like profiles for component
W,=U,11— Uy, Un, 0,, pn. There is longitudinal tension
(w,>0) and transversal compressian,t0). As this takes
place the values of the valence angles incred@ge-@,) and
valent bonds tensg,> po.

The soliton of tension exists in a narrow supersonic re-
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TABLE I. The dependence of soliton enerBy width L, ampli-

tude R, maximum valence anglé, and maximum length of the
valence bong on dimensionless velocity.

S

E (eV) L RA) 6deg pA)

0.9221
0.924
, , 0.926
0.93 s 0.94 0.928
0.930
0.932
0.934
0.936
0.938
0.940
0.9408

0 0 0 113.0 1.530
0.030 41.9 0.63 114.5 1.532
0.105 31.2 1.00 116.3 1.535
0.216 26.7 1.32 118.2 1.538
0.370 23.4 1.62 120.2 1.542
0.582 21.3 1.94 122.4 1.546
0.877 19.9 2.30 125.0 1.551
1.309 18.9 2.74 128.0 1.556
1.998 18.4 3.36 131.6 1.564
3.390 18.8 4.44 136.8 1574
4.601 19.6 5.31 139.9 1.581

existence

So

0.92 0.93 s 0.94

For the

FIG. 5. The dependence of the soliton enefgfa), width L (b),
amplitudeR (c) on dimensionless velocity.

gion sp<<s<'s;, where dimensionless velocitisg=c,/c,

s=c/cq, S;=0.9408. The dependence of the eneigyidth

L and amplitudeR of the soliton on dimensionless velocity o
s are presented in Fig. 5. The finiteness of the velocity spec- Wp
trum of the soliton is connected with the existence of the
inflection point #; for potential(4). With the increasing of

the velocity the value of the maximum valence angle
6= maxg, monotonically increases and approactigsnear

the right boundary of the spectrum. With the increasing of
the velocity the energy and amplitude monotonically grow
and approach their maximum valugs=4.6 eV,R,=5.3 A

for s=s,;. The width of the soliton decreases, but always
exceeds 18 segments of the chain. Therefore, the assumption
concerning the smooth dependence of the soliton form on the
number of cites is satisfied. Concrete values of the energy
E, width L, amplitude R, maximum valence angle
9=maxd, and maximum length of the valence bond 9n(de9)
‘p=maxp, are presented in Table I. As is seen from this

table, the tension of the chain occurs mainly due to an in-

crease of the valence angles. The elongation of the valence

bonds does not exceed several hundred parts of angstrom,

while the valence angles can increase on several decades of p (A) '
n

degrees.
Numerical solution of the minimum proble(i8) has also
shown that in the chain with multiwell potentiél,(8) the
high-amplitude soliton of tension exists wii+ 0.990. The
corresponding soliton energy E=11.55 eV. The soliton
profile is shown in Fig. 6. In the localization region of the
soliton the values of the valence angles exceed 180°, i.e.,
locally the chain transfers to another ground state. Existence FIG. 6.

of such a soliton is connected with the multistability of po- tensionw,=

(A)

helix model[8] geometric nonlinearity can also lead to the

of the soliton of tension with unique velocity.

VI. NUMERICAL SIMULATION OF SOLITON DYNAMICS

estimation of the stability of the nonlinear excita-

tions discussed above the modeling of the soliton dynamics
in the finite chain consisting oN;=400 sites was per-

0.4

0.2 -

0.0 | |
25 50 n 75

1807 -

150

120

25 50 n 75

The profiles of high-amplitude supersonic soliton of
Upi1— U, (@, v, (b), 6, (0), py (d). The soliton veloc-

tential. It was shown earlier that in a two-dimensional alpha-ity s=0.990, the energ=11.55 eV.
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FIG. 7. The elastic collision of two solitons of tension. Dimen-
sionless velocitys= 0.935.

formed. The system of the equations of motion

dH

dH
au,’

2
v’

(19

Mii,=

MUn: n=3,...,N1—

was integrated numerically. The end sites of the chmairi,
2,N;—1, N, are supposed to be immobilthe condition of
fixed boundary.

The initial conditions for systeril9)
Un+1(0)=Un(0)—wy, N-1;

u,(0)=R/2, n=2,...

va(0)=08, n=1,...N;

Un(0)=SCo[ Up+1(0) —U,—_1(0)1/2l,
Un(0)=5C[v+1(0)—v,-1(0)1/2l,
n=2,...N=1; uy(0)=un(0),

va(0)=vn(0), U\(0)=0, 0,(0)=0, N<n<N;

correspond to the soliton solutiow?,vN_, of problem

(18). As this takes place, the arrangement of the center of th
soliton may be defined as the point of intersection of th
the points

broken line, which subsequently unites
{(”=Un)}r’:‘i1, with the axisn.

500 0

0 250
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6, (deg)
180

150

120 :
0 250

Y
500
n

FIG. 9. The collision of the small-amplitude soliton of tension
(s=0.930) with the high-amplitude solitors€ 0.990).

Let us takeN =200, then the center of the soliton will be
initially situated on the 100th particle of the chain. To model
the dynamics of the soliton in the infinite chain, every time
when it propagates to the right up to the 200th site, the shift
of the soliton to the left on these 200 sites is fulfilled

Un(D)=Uns20dt),  Un(t)=Unsiz0dt), vn(t)=0vns20dt),
vn(t)=vn120d 1),

Un(t) =y, (0),

n=1,... N;

Un(1)=0, vp(t)=0y,(0),

va()=0, n=N+1,... N;.

The system of Eq$19) was integrated numerically by the
conventional Runge-Kutta method of the fourth order with
the constant step of the integration. The accuracy of the nu-
merical integration was controlled by the preservation of the
integral of the total energy

Ny—1

1
H= =
2 12

Eor example, while the stefit=10"1° the full energy was

Mu2+1M'2+V( )+U (6
n" 5 Un Pn (6n) |-

eDreserved up to seven meaning numbers in the all time of

integration.

Numerical simulation of the dynamics has shown that the
solitons of tension are dynamically stable at all admissible
velocities of the motion. They propagate along the chain
with preservation of their form. For example, the soliton of
tension with the initial dimensionless velocity=0.940
(c=7940.21 m/s passes 9999.762 sites of the chain during
160.683 ps, i.e., the dimensionless velocitgis0.939 756.
The profile of the soliton in finite time coincides fully with
the initial one(see Fig. 4.

The collision of two solitons has been numerically simu-
lated also. Let us consider the collision of two solitons which
move foward to each other with the same velodtyThe
numerical integration of systefd9) has shown that the col-
lision occurs elastically only if it does not lead to the in-
crease of the valence angles up to the value which corre-
sponds to the inflection poirt; of the potential(4). In the

FIG. 8. The unelastic collision of two solitons of tension. Di- former case the reflection of the solitons occurs without the

mensionless velocitg=0.940.

radiation of the phonons and change of the form of the
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solitons—see Fig. 7. Near the right boundary of the velocity VIl. CONCLUSION

spectrum this condition is broken, so that the collision leads

to the deformations of the angles exceeding the critical val- Nonlinear dynamics of a polyethylene chain is character-

ues@; and therefore it occurs unelastically. The reflection ofized by important peculiarities in comparison with a straight

solitons is accompanied by the radiation of the phon@ee  anharmonic atomic chain. First, supersonic solitons of ten-

Fig. 8. sion (rather than compressiparise due to the predominant
Let us consider at last the collision of high-amplitude soli-yole of geometric anharmonicity. Moreover, the spectrum of

ton with the low-amplitude solitons of tension. The high- syjiton velocity is restricted if one takes into account the

amplitude soliton has only one admissible value of the Veppysical anharmonicity. The solitons of tension are stable in

locity of propagations=0.990. In the localization region of 1o \whole region of their existence. The region of velocity

this soliton .the angle Qeforrr!at|on gxceeds always the Valuﬁ/here interaction between solitons is elastic is more narrow.
corresponding to the inflection point of the valence angle

potential. Therefore the collision of the high-amplitude soli-
ton with the low-amplitude one occurs inelastically with ra-
diation of the phononsgsee Fig. 9. Such a collision leads to
the breaking of the high-amplitude soliton. Its motion after
collision is accompanied by sustained radiation of phonons. This work was supported by Russian Foundation of Basic
The low-amplitude soliton preserves its form and propagateResearch(Grant No. 95-03-09026 Part of the numerical
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